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Los Alamos National Laboratory (LANL) has developed computational software for 
simulating multiphase flow analysis suitable for high-speed projectile penetration of 
metallic and nonmetallic materials, using a fluid implicit particle (FLIP)-material point 
method (MPM)-multiphase flow method (MFM).  Recently, ACTA teamed with LANL 
under an (STTR) contract to simulate complex weapon-target interactions for penetrating 
and exploding munitions.   This paper outlines the mathematical basis for the FLIP-
MPM-MFM method as implemented in LANL’s CartaBlanca code. 

 
 
 

INTRODUCTION 
 
ACTA Inc. and Los Alamos National Laboratory (LANL) have proposed an Army Small Business Technology 
Transfer STTR project to develop a robust, scalable, adaptive computational capability for the simulation of 
complex weapon-target interaction using LANL’s FLIP (Fluid Implicit Particle) - MPM (Material Point Method) - 
MFM (Multiphase Flow Method) approach, developed as an alternative to the fully-Lagrangian approach, [4, 8, 9, 
10, 14].  The method is implemented in CartaBlanca, a component-based nonlinear physical system simulation 
prototyping package using object oriented design [15].  It is used to solve extremely complex coupled problems 
involving (a) failure and penetration of solids, (b) heat transfer, (c) phase change, (d) chemical reactions, and (e) 
multiphase flow.  It features GUI capabilities and is designed to utilize multiple processors on a single computer or 
on computer clusters.  Written entirely in the Java programming language, it can be easily ported to many computer 
platforms including MS Windows, Linux, Unix, etc. 
 

NEED FOR A NEW ALGORITHM 
 
The penetration of materials and structures by Army munitions, including Military Operations in Urban Terrain 
(MOUT) [7], require knowledge and understanding of weapon effects on these materials and structures.  Air-
dropped weapons tend to be larger and are designed to damage a target by detonation in, on or near the structure.  
Army munitions, such as tank shells and artillery shells, tend to be smaller and are designed to explode on impact or 
after partial penetration.  Traditional Lagrangian-based nonlinear finite element programs such as DYNA3D are 
used to simulate weapon-target interaction problems when weapons are exploded at a distance from the targeted 
structure or structural component. However, many Army munitions explode after partially penetrating the structure.  
Severe deformations near the explosion and resulting secondary debris are not easily simulated using traditional 
Lagrangian-based codes due to severe mesh tangling. CartaBlanca is also capable of modeling secondary explosions 
due to impact of kinetic energy projectiles.  There is therefore a need for a validated computational capability that 
can simulate these complex weapon-target interaction problems.  The proposed FLIP-MPM-MFM approach in 
CartaBlanca is ideally suited for these types of complex problems. 
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THE FLIP-MPM-MFM APPROACH 

 
The survivability of systems due to blast and high velocity impact by K.E. penetrators can be addressed by a variety 
of computational methods.  Two popular techniques involve the use of either a purely Eulerian approach or a purely 
Lagrangian approach.  With the Eulerian approach, a fixed computational mesh is used and material is advected 
from mesh cell to mesh cell to follow the flow.  With the Lagrangian approach, the computational mesh itself is 
distorted to follow the material motion.  Each has its advantages and disadvantages.   
 
The Eulerian approach has the advantage that set up is often very straightforward because simple Cartesian meshes 
can be used.  Additionally, mesh-tangling issues are altogether avoided.  The disadvantage of the Eulerian approach 
is that all information must be transported via advection, which is subject to numerical diffusion errors that can be 
quite important when dealing with non-fluid materials.  Moreover, there is no clear conservation principle for the 
advection of non-conserved quantities such as stress history. 
 
The purely Lagrangian approach, on the other hand, avoids the problems associated with advection by letting the 
mesh points follow the motion of the flow.  Thus no advection is required.  Often, the generation of the initial mesh 
for the Lagrangian approach can be more challenging than that for the Eulerian approach if body fitting is required.  
Another difficulty with the purely Lagrangian approach, is that for complex flows with material distortion, the mesh 
can become tangled to the point where the computation cannot be continued.  One solution to this is the generation 
of a new mesh (rezoning) and the remapping of the data from the nearly tangled mesh to the new mesh.  The 
remapping operation is, however, a form of advection, and thus brings with it the numerical diffusion problems of 
the Eulerian method discussed above.  Furthermore, remapping items with no clear conservation principle for the 
advection of quantities like stress history, is questionable. 
 
For penetration problems, an additional concern associated with Lagrangian treatments is the complexity and 
difficulty associated with slide lines and so-called eroding slide lines.  These are implemented to allow slip between 
two separate material bodies with strength. These representations in software can be quite complex and difficult to 
maintain. 
 
A new alternative to the purely Lagrangian and Eulerian techniques discussed above is the use of the so-called FLIP 
(Fluid Implicit Particle) and MPM (Material Point Method) methods developed by the LANL T-3 group and 
collaborators at Univ. of New Mexico, [4, 8, 9, 10, 14].  The essence of these techniques is the use of meshless 
Lagrangian particles for the transport of conserved quantities for materials with strength and communication 
between these particles and the computational mesh through the use of interpolation functions called shape 
functions.  This technique eliminates the advection diffusion problems of the Eulerian technique and the mesh 
tangling and slide line problems of the Lagrangian techniques.  The LANL T-3 group has also married the 
FLIP/MPM method with their multiphase flow capabilities to produce a powerful general capability that has been 
used for a wide variety of fluid structure interaction problems including those with material penetration and material 
failure.  Addessio et al. [2] provide a summary of this technique including examples of the hydrodynamic ram 
problem in which a bullet penetrates a composite airplane wing tank filled with fluid.  
 
Currently, the FLIP-MPM-MFM approach is being used at LANL to address issues of high explosives safety and 
high explosives microstructure, metals loaded with high explosives and granular materials.  It is also beginning to be 
used to investigate shock induced plastic deformation in complex metal alloys.  The FLIP-MPM-MFM approach is 
currently implemented in LANL’s CFDLIB code as well as its CartaBlanca code, both developed by the LANL T-3 
group. 
 

CARTABLANCA 
 
CartaBlanca was developed recently at Los Alamos National Laboratory to exploit both modern object oriented 
programming techniques and recent developments in numerical methods for non-linear systems of algebraic 
equations.  CartaBlanca is written in the Java programming language and employs a component-like design using 
Java’s object oriented programming facilities.  As a result, CartaBlanca is a developer friendly environment; adding 
new physical models, conservation equations, or numerical methods is easy compared to traditional multipurpose 
solvers.  More on the object oriented design of CartaBlanca can be found in [15]. 



 
MULTIPHASE FLOW EQUATIONS 

 
One of the main physics modules in CartaBlanca is for the simulation of multiphase flow.  The derivation of the 
governing equations for multiphase flow is provided in [5, 6, 1].  In the following sections, we present the final 
forms of the governing equations.  We shall make use of the following general form of the conservation equation.  
For an arbitrary control volume V  with bounding surface A  the generic conservation statement is of the form 
 

 ( ) 0,A
V A V

d qdV q u u f ndS sdV
dt

⎡ ⎤+ − + ⋅ + =⎣ ⎦∫ ∫ ∫  (1) 

 
where is the density of some conserved quantity such as mass, momentum or energy, u is the material velocity 

field,  is the velocity of the boundary of the control volume, 

q

Au f is the local flux of this conserved quantity due to a 
variety of mechanisms such as diffusion, n is an outward normal vector defined on the surface of the control 
volume, and s  is a generalized source density.  The first and third integrals in Equation (1) are over the entire space 
of the control volume; the second integral is over the surface of the control volume.  The derivative on the first 
integral quantity in Equation (1) is with respect to time. 
 

MASS CONSERVATION 
 
The mass conservation equations for each phase in a multiphase flow are obtained using Equation (1) with kq ρ= , 
the average mass density for phase  and with k ks = Γ , the net rate of appearance of phase  due to mass exchange 
from or to other phases. 

k

 
MOMENTUM CONSERVATION 

 
The momentum conservation equation for phase  is obtained from Equation (1) where k k kq uρ=  in which ku  is 
the local mass average velocity for phase .  In addition, the source and flux terms are given by k
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where kθ  is the volume fraction,  is the pressure field common to all phases,  is the phase  pressure, p o

kp k *u is the 
velocity of the transferring material, g is the body force, mτ  is the deviatoric stress of the mixture, o

kτ is the 
deviatoric stress in phase  and k klK  is the momentum exchange coefficient for interactions such as drag between 
phase and phase  and k l I  is the identity tensor.  The last term in Equation (2) is a Darcy drag term with 
coefficient, D kK − . 
 
For the example considered in this proposal, we assume inviscid flow and that o

kp p= .  We also will neglect the 
effect of gravity.  We furthermore neglect as often unimportant the mass transfer term in Equation (2).  Thus, 
Equations (2) and (3) become 
 
 ( )k k l kl l k D k

l k
ks p K u u Kθ θ θ −

≠

= − ∇ + − + u∑  (4) 

 
and  
 0f =  (5) 



 
ENERGY CONSERVATION 

 
For energy conservation, we choose the enthalpy wherein k kq hρ= where is the average enthalpy per unit mass of 
phase .  The source and flux terms are given by 

kh
k
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and 
 eff
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where is a heat transfer coefficient for exchange between phase  and phase ,  is the temperature of phase 

, 
klR k l kT

k kβ  is the thermal expansivity for phase ,  is the material time derivative of pressure,  is the enthalpy of 
the exchanged material and  is the mixture thermal conductivity.  The subscript denotes a mixture quantity. 

k p *
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For the example considered in this proposal, we neglect the work term, the viscous dissipation term and the 
deviatoric heat flux.  Thus, Equations (6) and (7) simplify to  
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and 
 0f =  (9) 
 
We will identify the mass transfer term later. 
 

CONTINUITY EQUATION 
 
The continuity equation or condition for multiphase flows is that the sum of the volume fractions must equal one. 
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This equation essentially governs the pressure variable.  The volume fraction is computed as 
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where o

kρ  is the material k density, which is a function of pressure and temperature via an equation of state. 
 

NUMERICAL ALGORITHM 
 
In CartaBlanca, the multiphase flow equations are solved using the finite-volume discretization and the Lagrangian-
Eulerian time stepping technique.  Many of the details of the algorithm take advantage of the procedure of Kashiwa, 
et al. [11].  CartaBlanca adopts the node-based version of this scheme with edge-based connectivity, [12,13].  We 
provide here a very simplified outline of the method.  For numerical computations, Equation (1) is discretized in 
time and in space on a computational grid.  On such a grid, conservation nodes are connected by edges as shown in 
Figure 1.  



 
Figure 1. Control volume for the  node. thi

Each node is associated with a polyhedral control volume, , as depicted in Figure 1.  For each node, the averaged 
value of the conserved density is defined as 
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The quantities  are, typically, the state variables for the numerical simulation.  Similarly, the average source over 
each control volume is 
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Let the subscript e  denote the average value of quantities on the control volume face associated with edge .  Then, 
if we integrate the Equation (1) over a time step, 

e
t∆ , using, for example, a first-order difference approximation for 

the time derivative, we obtain the discretized form of the conservation equation 
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where the superscripts and  denote the present and future time levels, respectively.  The angle brackets, n 1n +

e
, 

denote the average over the time interval of the conserved quantity passing through the face .  Of course, the 
fluxes and source terms are generally functions of space, time and the state variables, .  Thus, the set of 
discretized conservation equations for all nodes and all types of conservation quantities forms a nonlinear algebraic 
system.  The physics for a given application lies in the definition of the fluxes and sources in Equation (14).  The 
aim of CartaBlanca is to provide scientists and engineers a friendly environment using object-oriented Java for the 
implementation of component-like physics and solver objects for the solution of the corresponding coupled 
nonlinear conservation equations. 

e
iq

 
GRID-PARTICLE INTERPOLATION 

 
To integrate the equations of motion for phases with material strength interpolation of data is required from the grid 
to the particle and vice versa.  This is accomplished using finite-element shape functions (usually 1st order).  The 
interpolation formulas are of the general form 
 particle n n p
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The first formula interpolates a quantity q (mass density, velocity, etc. ) from the nodes in an element to the particle 
by summing over the nodes in the element and weighting the node quantity with the node shape function S.  The 
second formula scatters information from the particles to the nodes by summing over all the particles in the elements 
corresponding to the node in a mass weighted fashion.  In the third equation, the force density at a node is obtained 
by interpolating the divergence of the stress, σ, using the spatial derivative of the shape function and particle volume 
weighting.  These interpolation formulas enable information to be carried on the particles and then brought down to 
the grid for the final integration of the momentum equation to advance velocity, position, etc.  Items such as stress 
can be evolved on the particle so that history effects can be accounted for in a straightforward manner and effects of 
advection can be avoided. 
 

AWERBUCH AND BODNER EXPERIMENTS 
 
Awerbuch and Bodner [3] have performed an experimental program on ballistic perforation of metallic plates.  We 
focused on the experiment with a standard 9.3 gram lead bullet with an 850 m/sec muzzle velocity and a 19 mm 
thick aluminum target plate (Hardness 90 BHN, yield stress of 28 Kg/mm2).  High-speed photographs of the selected 
experiment are given in Figure 2. 
 

 
 

Figure 2.  Photographic sequence for lead bullet penetrating aluminum plate from [3,16] 

 
DEMONSTRATON OF FLIP-MPM-MFM APPROACH 

 
Simulation of the experiments of Awerbuch, et al. [3,16] on the penetration of a lead bullet through an aluminum 
plate is presented.  The simulations were performed using the CartaBlanca code that employs the FLIP-MPM-MFM 
algorithm developed by LANL’s fluid dynamics group for fluid-structure interaction problems.  A simple linear 
elastic consitutive law with Von Mises plasticity gave the stress in bodies with strength.  Using this simple approach 
to material behavior modeling, we computed the Auerbuch-Bodner penetration event and a demonstration 
calculation involving high explosive material behind the target plate.  The results from these calculations are shown 
in the figures below. 



 

 
 

Figure 3.  Bullet-plate penetration at 20 microseconds.  Simple Von Mises plasticity with porosity growth model.  
Initial approach velocity of 850 m/s.  Dimension 10cmx10cm.  Color denotes material density. 

 
 

Figure 4.  Bullet-plate penetration at 40 microseconds.  Simple Von Mises plasticity with porosity growth model.  
Color denotes material density. 

 
 

Figure 5.  Bullet-plate penetration at 60 microseconds.  Simple Von Mises plasticity with porosity growth model.  
Color denotes material density. 

 
The final set of results is from a simulation involving 4 phases including gas, lead, aluminum and reactive high 
explosive.  The high explosive followed a simple Arrhenius one-step first order reaction law to convert from solid 
composite to gas.  The results are shown in Figure 6 to Figure 9. 



 
Figure 6.  4 phase reactive penetration calculation.  Time was 24 microseconds from start.  Explosion was initiated 

at center-top of high explosive material.  Color denotes material enthalpy. 

 
Figure 7.  4 phase reactive penetration calculation.  Time was 26 microseconds from start.  Explosion was initiated 
at center-top of high explosive material.  Color denotes material enthalpy.  Red region shows extent of exploding 

material. 

 
Figure 8.  4 phase reactive penetration calculation.  Time was 36 microseconds from start.  Explosion was initiated 
at center-top of high explosive material.  Color denotes material enthalpy.  Red region shows extent of exploding 

material. 



 
Figure 9.  4 phase reactive penetration calculation.  Time was 56 microseconds from start.  Explosion was initiated 
at center-top of high explosive material.  Color denotes material enthalpy.  Red region shows extent of exploding 

material. 

CONCLUSIONS 
 
The results above are preliminary but encouraging.  The later 2D computations show a more realistic deformation of 
the bullet and the aluminum plate.  The blowback of the aluminum on the front side of the plate and the 
mushrooming of the nose of the bullet are evident.  The computed exit velocity was 425 m/sec.  This is lower than 
the observed exit velocity of 568-585 m/sec.  This discrepancy could be due to inadequate materials models and will 
be the subject of future work.  This STTR Phase I study has demonstrated the feasibility of using the CartaBlanca 
code and the FLIP-MPM-MFM algorithm for further studies of weapon target interaction (WTI) and penetration 
problems of interest to the Army.  The Phase II follow-on effort on verification and validation of CartaBlanca for 
penetration of ductile metal targets and penetration of brittle targets such as CMU/RC wall has begun. 
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